Deutscher Hängegleiterverband e.V.
HomeIContactIImprintIData protection
DHV

DHV Testreport LTF

dhvlogo
GIN Leopard L
Type designationGIN Leopard L
Type test reference noDHV GS-01-2440-19
Holder of certificationGIN Gliders Inc.
ManufacturerGIN Gliders Inc.
ClassificationD
Winch towingYes
Number of seats min / max1 / 1
AcceleratorYes
TrimmersNo
GIN Leopard L
 Behaviour at min weight in flight (105kg)Behaviour at max weight in flight (127kg)
Test pilots
Harald Buntz
Harald Buntz
Sebastian Mackrodt
Sebastian Mackrodt
 No releaseNo release
Inflation/take-offBB
Rising behaviourEasy rising, some pilot correction is requiredEasy rising, some pilot correction is required
Special take off technique requiredNoNo
 
LandingAA
Special landing technique requiredNoNo
 
Speeds in straight flightAA
Trim speed more than 30 km/hYesYes
Speed range using the controls larger than 10 km/hYesYes
Minimum speedLess than 25 km/hLess than 25 km/h
 
Control movementCC
Symmetric control pressureIncreasingIncreasing
Symmetric control travel50 cm to 65 cm50 cm to 65 cm
 
Pitch stability exiting accelerated flightAA
Dive forward angle on exitDive forward less than 30°Dive forward less than 30°
Collapse occursNoNo
 
Pitch stability operating controls during accelerated flightAA
Collapse occursNoNo
 
Roll stability and dampingAA
OscillationsReducingReducing
 
Stability in gentle spiralsAA
Tendency to return to straight flightSpontaneous exitSpontaneous exit
 
Behaviour exiting a fully developed spiral diveBB
Initial response of glider (first 180°) en : keine unmittelbare Reaktionen : keine unmittelbare Reaktion
Tendency to return to straight flightSpontaneous exit (g force decreasing, rate of turn decreasing)Spontaneous exit (g force decreasing, rate of turn decreasing)
Turn angle to recover normal flight720° to 1 080°, spontaneous recovery720° to 1 080°, spontaneous recovery
 
Symmetric front collapse DD
EntryRocking back less than 45°Rocking back less than 45°
RecoverySpontaneous in 3 s to 5 sSpontaneous in 3 s to 5 s
Dive forward angle on exitDive forward 30° to 60°Dive forward 30° to 60°
Change of courseEntering a turn of less than 90°Entering a turn of less than 90°
Cascade occursNoNo
Folding lines usedyesyes
 
Unaccelerated collapse (at least 50 % chord)DD
EntryRocking back less than 45°Rocking back less than 45°
RecoveryRecovery through pilot action in less than a further 3 sSpontaneous in 3 s to 5 s
Dive forward angle on exitDive forward 30° to 60°Dive forward 30° to 60°
Change of courseEntering a turn of 90° to 180°Entering a turn of 90° to 180°
Cascade occursNoNo
Folding lines usedyesyes
 
Accelerated collapse (at least 50 % chord)DD
EntryRocking back less than 45°Rocking back less than 45°
RecoveryRecovery through pilot action in less than a further 3 sRecovery through pilot action in less than a further 3 s
Dive forward angle on exitDive forward 30° to 60°Dive forward 30° to 60°
Change of courseEntering a turn of 90° to 180°Entering a turn of 90° to 180°
Cascade occursNoNo
Folding lines usedyesyes
 
Exiting deep stall (parachutal stall)CC
Deep stall achievedYesYes
RecoverySpontaneous in less than 3 sSpontaneous in less than 3 s
Dive forward angle on exitDive forward 0° to 30°Dive forward 30° to 60°
Change of courseChanging course 45° or moreChanging course 45° or more
Cascade occursNoNo
 
High angle of attack recoveryAA
RecoverySpontaneous in less than 3 sSpontaneous in less than 3 s
Cascade occursNoNo
 
Recovery from a developed full stallBB
Dive forward angle on exitDive forward 30° to 60°Dive forward 30° to 60°
CollapseNo collapseNo collapse
Cascade occurs (other than collapses)NoNo
Rocking backLess than 45°Less than 45°
Line tensionMost lines tightMost lines tight
 
Small asymmetric collapseDD
Change of course until re-inflation90° to 180°90° to 180°
Maximum dive forward or roll angleDive or roll angle 15° to 45°Dive or roll angle 15° to 45°
Re-inflation behaviourSpontaneous re-inflationSpontaneous re-inflation
Total change of courseLess than 360°Less than 360°
Collapse on the opposite side occursNo (or only a small number of collapsed cells with a spontaneous re inflation)No (or only a small number of collapsed cells with a spontaneous re inflation)
Twist occursNoNo
Cascade occursNoNo
Folding lines usedyesyes
 
Large asymmetric collapseDD
Change of course until re-inflationGreater than 360°90° to 180°
Maximum dive forward or roll angleDive or roll angle 45° to 60°Dive or roll angle 60° to 90°
Re-inflation behaviourInflates in less than 3 s from start of pilot actionSpontaneous re-inflation
Total change of courseen : größer als 360° mit der Tendenz zum Erholen (G-Kraft nimmt ab, Drehrate nimmt ab)Less than 360°
Collapse on the opposite side occursNo (or only a small number of collapsed cells with a spontaneous re inflation)Yes, no turn reversal
Twist occursNoNo
Cascade occursNoNo
Folding lines usedyesyes
 
Small asymmetric collapse acceleratedDD
Change of course until re-inflation90° to 180°90° to 180°
Maximum dive forward or roll angleDive or roll angle 15° to 45°Dive or roll angle 45° to 60°
Re-inflation behaviourSpontaneous re-inflationSpontaneous re-inflation
Total change of courseLess than 360°Less than 360°
Collapse on the opposite side occursNo (or only a small number of collapsed cells with a spontaneous re inflation)No (or only a small number of collapsed cells with a spontaneous re inflation)
Twist occursNoNo
Cascade occursNoNo
Folding lines usedyesyes
 
Large asymmetric collapse acceleratedDD
Change of course until re-inflationGreater than 360°90° to 180°
Maximum dive forward or roll angleDive or roll angle 45° to 60°Dive or roll angle 60° to 90°
Re-inflation behaviourInflates in less than 3 s from start of pilot actionSpontaneous re-inflation
Total change of courseen : größer als 360° mit der Tendenz zum Erholen (G-Kraft nimmt ab, Drehrate nimmt ab)Less than 360°
Collapse on the opposite side occursNo (or only a small number of collapsed cells with a spontaneous re inflation)Yes, no turn reversal
Twist occursNoNo
Cascade occursNoNo
Folding lines usedyesyes
 
Directional control with a maintained asymmetric collapseAA
Able to keep courseYesYes
180° turn away from the collapsed side possible in 10 sYesYes
Amount of control range between turn and stall or spinMore than 50 % of the symmetric control travelMore than 50 % of the symmetric control travel
 
Trim speed spin tendencyAA
Spin occursNoNo
 
Low speed spin tendencyAA
Spin occursNoNo
 
Recovery from a developed spinAB
Spin rotation angle after releaseStops spinning in less than 90°Stops spinning in 90° to 180°
Cascade occursNoNo
 
B-line stall
Not carried out because the manoeuvre is excluded in the user's manual
 
Big earsBB
Entry procedureDedicated controlsDedicated controls
Behaviour during big earsStable flightStable flight
RecoveryRecovery through pilot action in less than a further 3 sRecovery through pilot action in less than a further 3 s
Dive forward angle on exitDive forward 0° to 30°Dive forward 0° to 30°
 
Big ears in accelerated flightBB
Entry procedureDedicated controlsDedicated controls
Behaviour during big earsStable flightStable flight
RecoveryRecovery through pilot action in less than a further 3 sRecovery through pilot action in less than a further 3 s
Dive forward angle on exitDive forward 0° to 30°Dive forward 0° to 30°
Behaviour immediately after releasing the accelerator while maintaining big earsStable flightStable flight
 
Alternative means of directional controlAA
180° turn achievable in 20 sYesYes
Stall or spin occursNoNo
 
Any other flight procedure and/or configuration described in the user's manualCC
Description of manoeuvre / configurationB-3B-3
Procedure works as describedYesYes
Procedure suitable for novice pilotsNoNo
Cascade occursNoNo